
Abstract. Regional density functional theory has been
extended to treat irreversible thermodynamic electronic
processes for application to adiabatic electron-transfer
processes of chemical reactions. Onsager's local equilib-
rium hypothesis is slightly modi®ed to take into account
the quantum mechanical nature of the electron. The
quantum mechanical interference e�ect has been dem-
onstrated to be included in the entropy production rate
formula associated with electron transfer through an
interface. A new formula for the determination of the
transition state of a chemical reaction has been postu-
lated that corresponds to the maximum of the regional
electron transferability. A quantum mechanical law of
mass action has been established and applied to prove
the regional electrochemical potential inequality prin-
ciple.
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Regional density functional theory ± Irreversible
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1 Introduction

Gibbs proved the usefulness of the constant chemical
potential between two regions in space where we observe
no ¯ux of particles whatsoever when chemical equili-
brium is attained globally [1]. The constancy of the
chemical potential is perturbed if we put an object
between a pair of regions, when the transfer of particles
is rather inhibited through the interface, bringing about
a ®nite di�erence in regional chemical potentials even
after chemical equilibrium is attained globally [2]. The
object may in some cases be represented as a semi-
permeable membrane. If the particles are electrons,

quantum mechanical tunneling is allowed through the
barrier of the interface, and the common value of the
chemical potential acquires physical reality as the Fermi
level, a well-de®ned useful quantity. For electrons,
however, the regional energies are not free from the
long-range Coulomb interactions nor the o�-diagonal
matrix elements that should act even through the
interface. Although screening e�ects may somehow hide
the long-range Coulomb interactions, the o�-diagonal
terms in the density matrix should still play an important
role that is representative of the nonlocal coherent
nature of the electronic wave function, the very nature of
the quantum mechanics of electrons. The consequence is
that there remain ®nite di�erences in the regional
chemical potentials even though the Fermi level is
de®ned rigorously following the condition of the global
equilibrium; this inhomogeneity of regional chemical
potentials was proved in an earlier paper using the
complementary regions P and Q that span the whole
space [3±5], and the proof is here referred to as the
regional electrochemical potential inequality principle or
the chemical potential inequality principle for short.

It is the aim of this article to demonstrate the chem-
ical potential inequality principle in a more general
situation where we start from the treatment of irre-
versible electronic processes over more than two regions
in a chemical reaction system under external pertur-
bations.

Let us consider a chemical reaction system A em-
bedded in a medium M, an environmental system of
chemical reaction. During the progress of chemical re-
action in A, the electronic subsystem of A can exchange
heat, work, and electrons with M through an interface
which divides A from M. Moreover, the electronic sub-
system of A can exert work on the nuclear subsystem of
A, and vice versa, where the nuclear subsystem of A is
assumed to be thermally isolated from the medium M as
well as from the electronic subsystem of A. This is the
adiabatic approximation that we rely on throughout in
this article, and we neglect relativistic e�ects as well. If
the electronic subsystem of A is in chemical equilibrium
with the medium M and the chemical reaction in A is a
quasi-static process, then the maximum work is gained
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from the electronic subsystem of A, and therefore only
the minimum work is required for the nuclear subsystem
of A [1], where the pathway of the nuclear con®guration
change is given by using the theory of the intrinsic
reaction coordinate (IRC) or meta-IRC [6, 7].

The adiabatic electron transfer in the chemical reac-
tion system A is studied by regional density functional
theory [3±5], in which we have assumed that at every
moment of ®xed con®guration for the nuclear subsystem
of A the electrons are redistributed in A with no excess
or loss adapted to each region of space, whereby any
irreversible electron ¯ow which may be brought about
by the in®nitesimal successive change of nuclear con-
®guration should ultimately disappear; this is quite a
natural assumption. Even in the absence of M, the dis-
tribution of the electronic density q�r� in the electronic
subsystem of A is inhomogeneous, re¯ecting the inho-
mogeneous discrete distribution of nuclei in A. However
inhomogeneous q�r� should be, Mermin [8] proved that
the thermodynamic potential X for the electronic sub-
system of A is a unique function of q�r�:

X�q� � Trq̂�q� Ĥ ÿ lGN̂ � 1

b
ln q̂�q�� �

� �
; �1�

� E�q� ÿ lGN �q� ÿ TS�q� ; �2�

E�q� � F �q� �
Z

dr q�r�m�r� ; �3�

where q̂; Ĥ ; N̂ ; E, N , S, T , lG; b, F , and m�r� denote the
density matrix, the electronic Hamiltonian, the electron
number operator, the electronic energy, the electron
number, the electronic entropy, the absolute tempera-
ture, the Gibbs electrochemical potential or the Gibbs
chemical potential for short, the inverse temperature, the
universal functional, and the external potential com-
posed of electron-nuclear Coulomb attraction energies,
respectively. The Gibbs chemical potential lG is ob-
tained as

lG �
�
@E
@N

�
S;m

; �4�

which is the change in the electronic energy E as a
function of the electron number N .

In harmony with the inhomogeneity of q�r�, we have
given a mathematical proof of the inhomogeneity of the
regional chemical potentials [3±5]. Indeed, in terms of
the complementary regions P and Q that span the whole
space, we have

lP 6� lQ ; �5�
where lP and lQ denote the regional chemical potentials

lP �
�
@EP

@NP

�
S;NQ;m

; lQ �
�
@EQ

@NQ

�
S;NP;m

; �6�

with regional electronic energies EP;Q and electron
numbers NP;Q that satisfy

E � EP � EQ ; �7�
N � NP � NQ : �8�

The di�erence in Eq. (5) has been given as

lP ÿ lQ � sP ÿ sQ (difference rule) ; �9�
where sP;Q denotes the regional transfer potentials
de®ned as

sp � @EP

@N

� �
S;m;C

; sQ � @EQ

@N

� �
S;m;C

; �10�

which are summed up to give lG,

lG � sP � sQ (sum rule) ; �11�
where the subscript C in Eq. (10) denotes the coordinate
of electron transfer [3]. The chemical potential inequality
principle is schematically shown in Fig. 1.

It is not, however, a trivial matter to ``observe'' the
inhomogeneity of the regional chemical potentials using
appropriate apparatus. A promising candidate for this
kind of measurement may be found in a study of the
work function of metals as a function of crystallographic
planes [9]. The medium M in this measurement of the
work function is used to observe the electrostatic po-
tential energy of an electron at a point in the neighbor-
hood of the crystal surface plane just outside of it [10],
where a clever choice of apparatus could allow the
chemical potential inequality principle to be proved.
However, we are not in a position here in this article to
invent a device if the medium M is situated in such a way
as to discriminate against the regional chemical poten-
tials. Rather, we shall devise a method to probe the
transfer of electrons within the electronic subsystem of A
from one region to another through the interface situ-
ated in-between. The subdivision of the electronic sub-
system of A into regions R, R0, R00, and so on is shown
schematically in Fig. 2a. In a region, R say, the elec-
tronic subsystem of A is assumed to be in chemical
equilibrium, but we allow irreversible electron ¯ow
through the interface that divides R and the adjacent
region, R0 say.

This situation is nothing but the local equilibrium
hypothesis due to Onsager [11, 12] and is adapted in this
article in order to treat irreversible electron transfer in
the electronic subsystem of A. In the irreversible ther-
modynamics of Onsager, there is a gradient of chemical
potentials, where Eq. (5) is mandatory. We shall slightly
modify the theory of Onsager in such a way that the

Fig. 1. The chemical potential inequality principle
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quantum mechanical interference e�ect works through
the interfaces that divide the regions in the electronic
subsystem of A. This quantum mechanical interference
e�ect survives even in the limit of global chemical
equilibrium, leading to the chemical potential inequality
principle that predicts the inequality in-between either

1. The Gibbs chemical potential lG for the electronic
subsystem of A as a whole and the regional chemical
potential lR, or

2. The regional chemical potentials lR themselves.

Unless otherwise stated explicitly, we do not use the
zero-temperature limit in each equation, as was implic-
itly performed in our preceding papers [3±5].

2 Extension of Onsager's local equilibrium theory

2.1 Local equilibrium under quantum mechanical
interference e�ects

In his original theory, Onsager established a local
equilibrium hypothesis in the treatment of irreversible
thermodynamic processes. According to his hypothesis,
we need the number of the Gibbs ensembles which is as
many as the number of regions as shown in Fig. 2b. In

his original hypothesis, each region has its own Hamil-
tonian; however, we shall now allow the quantum
mechanical coherency of electrons that can tunnel to
neighboring regions surrounding the region R of inte-
rest. This slight extension can be performed using
apparatus density functional theory where we need only
one electronic Hamiltonian that covers the system as
a whole and the distribution of electron density that
possesses coherency is treated as the apparatus for the
region R of interest [3]. Thus we get the density matrix

q̂� � exp�ÿbRĤ ÿ cRN̂�=Tr exp�ÿbRĤ ÿ cRN̂� �12�
with

Ĥ � ĤA ÿ
X

i

kiRÂiR ÿ
Z

dr mR�r�N̂�r� ; �13�

where ĤA, ÂiR, and N̂�r� denote, respectively, the
Hamiltonian of the system A, the apparatus operator,
and the electron density operator. The electron density
operator N̂�r� is integrated to give the electron number
operator N̂ ,

N̂ �
Z

dr N̂�r� : �14�

The Lagrange multipliers in q̂� are
1. The inverse temperature bR,

bR �
1

kBTR
�15�

with the temperature TR and the Boltzmann constant kB.
2. The Gibbs chemical potential lGR,

cR � ÿbRlGR : �16�
3. The apparatus parameter kiR.
4. The controlling function mR�r� of electron density.

The Hamiltonian Ĥ reduces to the original Hamiltonian
ĤA of the electronic subsystem A when we treat the
equilibrium state in the absence of apparatuses.

Since we are treating local equilibrium under the
presence of apparatuses, the Mermin entropy principle
ensures the maximum entropy using q̂� in Eq. (12)

S � ÿkBTrq̂� ln q̂� � maximum : �17�
By assuming that we use a nonrelativistic Hamiltonian,
the apparatus should not absorb or create electrons, and
hence Ĥ as well as ĤA should be commutable with N̂ ,

�Ĥ ; N̂ � � 0 ; �18�
so that Ĥ and N̂ are simultaneously diagonalized to give

Ĥ jj i � Ejjj i ; �19�
N̂ jj i � Njjj i ; �20�
and therefore

q̂� �
X

j

jj ipj h jj �21�

pj � exp�ÿbREj ÿ cRNj�NR ; �22�
where we have used the partition function

Fig. 2. Regional partitioning: a interface structure, and b Onsag-
er's hypothesis of local equilibrium
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NR �
X

j

exp�ÿbREj ÿ cRNj� ; �23�

and the normalization condition

Trjji hjj � 1 : �24�
The total electronic energy E and the total electron
number N are given by

E � Trq̂� Ĥ �
X

j

pjEj ; �25�

N � Trq̂� N̂ �
X

j

pjNj : �26�

It should be noted that the electron density qj�r� for the
state j is obtained as the diagonal part of the ®rst-order
reduced density matrix and satis®esZ

drqj�r� � NjTrjji hjj � Nj : �27�

In other words, the normalization condition, Eq. (24),
reads

Trjji hjj �
R

drqj�r�
Nj

� 1 : �28�

2.2 Regional partitioning

In a previous study, we introduced a device to calculate
regional quantities using reduced density matrices [3, 4].
The manipulation is based on the coordinate represen-
tation of the density matrix, where the multiple integra-
tion with respect to spatial Cartesian coordinates ri
and spin coordinates ri for the ith electron is divided
intoZ Y

i

dri dri �
Z

dr1

Z
dr1

Y
i�6�1�

dri dri ; �29�

and the ®nal integration is further divided into a regional
partitioned formZ

dr1 �
X
R

Z
R

dr1 ; �30�

where the subscript R of the integration symbol dictates
integration con®ned solely to the particular region R.

In particular, for example, the electron number Nj of
the jth state is partitioned into a regional electron
number NjR as follows

Nj �
Z

drqj�r� �
X
R

NjR; NjR �
Z
R

drqj�r� ; �31�

where we have used Eqs. (27) and (30). In other words,
using Eqs. (28), (30), and (31), we have

Trjji hjj �
X
R

xjR � 1; xjR � NjR

Nj
: �32�

Hence, we obtain the following regional partitionings:

Ej �
X
R

EjR; EjR � EjxjR ; �33�

Nj �
X
R

NjR; NjR � NjxjR ; �34�

qj�r� �
X
R

qjR�r�; qjR�r� � qj�r� in R;� 0 otherwise :

�35�
Analogously, we obtain

E �
X
R

ER; ER �
X

j

pjEjR �
X

j

pjEjxjR ; �36�

N �
X
R

NR; NR �
X

j

pjNjR �
X

j

pjNjxjR ; �37�

q�r� �
X
R

qR�r�; qR�r� �
X

j

pjqjR�r� : �38�

Moreover, Eq. (17) reduces to

S �
X
R

SR; SR �
X

j

�ÿkBpj ln pj�xjR : �39�

It should be noted that the regional entropies SR are
exactly added to give the total entropy S, but the
maximum of the total entropy S is not necessarily that of
the regional entropies.

The alternative density functional representation of E
can now be obtained in terms of the regional ones

E�q� � F �q� �
Z

drq�r�m�r� �
X
R

ER�q� ; �40�

with

ER�q� � FR�q� �
Z

drqR�r�m�r� ; �41�

and in terms of Ej�q� as

Ej�q� � Fj�q� �
Z

drqj�r�m�r� �
X
R

EjR�q� ; �42�

with

EjR�q� � FjR�q� �
Z

drqjR�r�m�r�: �43�

2.3 In®nitesimal changes in regional quantities

The in®nitesimal change of ER is given by

dER � d
X

j

pjEjR �
X

j

dpjEjR �
X

j

pj dEjR : �44�

For (1) the quantities related to dpj we have also dNR

and dSR as follows:

dNR � d
X

j

pjNjxjR

�
X

j

dpjNjxjR �
X

j

pjNj dxjR ; �45�
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TR dSR � TRd
X

j

�ÿkBpj ln pj�xjR

� ÿkBTR

X
j

�dpj ln pj�xjR

ÿkBTR

X
j

�dpjxjR � �pj ln pj�dxjR� ; �46�

while for (2) the quantities related to dEjR we have

dEjR � dFjR �
Z

dr dqjR�r�m�r� �
Z

drqjR�r�dm�r� :
�47�

Here we can write

dFjR �
Z

dr dqjR�r�m�r� �
@EjR

@NR
dNR �

X
R0�6�R�

@EjR

@NR0
dNR0 ;

�48�
where the partial derivatives with respect to the regional
electron numbers are to be performed using the manip-
ulation

@

@NR
�
Z

dr
@q�r�
@NR

d
dq�r� ;

@

@NR0
�
Z

dr
@q�r�
@NR0

d
dq�r� ;

�49�
where d denotes the functional derivative and

@q�r�
@NR

� @q�r�
@NR

� �
m;NR0 �6�R�

;

@q�r�
@NR0

� @q�r�
@NR0

� �
m;NR0 ;NR00�6�R;R0 �

�50�

denote the Fukui functions with respect to the regional
electron number changes. These are combined to reduce
Eq. (44) to

dER � TR dSR � lR dNR �
X

R0�6�R�
aRR0 dNR0

�
Z

drqR�r� dm�r� ; �51�

with

lR � lGR � kBTR

X
j

�1ÿ NR�xjR
@pj

@NR

�
��pj ln pj � cRpjNj� @xjR

@NR

�
�
X

j

pj
@EjR

@NR
; �52�

aRR0 � kBTR

X
j

�1ÿ NR�xjR
@pj

@NR0

�
��pj ln pj � cRpjNj� @xjR

@NR0

�
�
X

j

pj
@EjR

@NR0
: �53�

The regional chemical potential lR is slightly di�erent
from the Gibbs chemical potential lGR, and the new
quantity aRR0 measures the quantum mechanical inter-

ference e�ect. The last term Eq. (51) represents the
external work against the nuclear subsystem of A.

3 Chemical equilibrium

If the global chemical equilibrium is attained, we have

TR � TR0 � TR00 � � � � � T �54�
and

dE � T dS � lG dN �
Z

drq�r�dm�r� : �55�

Using Eqs. (36), (51), and (54), we have

dE �
X
R

dER � T
X
R

dSR �
X
R

�
lR �

X
R0�6�R�

aR0R

�
dNR

�
Z

dr
X
R

qR�r� dm�r� : �56�

Then, comparing Eq. (55) with Eq. (56), and using
Eq. (38), we obtain

lG � lR �
X

R0�6�R�
aR0R : �57�

This is referred to as the quantum mechanical law of
mass action. If we neglect the quantum mechanical
interference term aR0R, we get

lR � lR0 � lR00 � � � � � lG ; �58�
which is nothing but the Gibbs law of mass action. It is
observed that Eq. (58) is interpreted as the Sanderson
principle of electronegativity equalization [13].

4 Two-region problem

For the illustration of the present treatment, we shall
apply the theory to a two-region problem; the system is
composed of only two complementary regions Q and P
in which an electron is transferred from Q to P. The
partitioning of q�r�, E;N , and S are given by

q�r� � qP�r� � qQ�r� ; �59�
E � EP � EQ ; �60�
N � NP � NQ ; �61�
S � SP � SQ : �62�
For the adiabatic process, where the electronic subsys-
tem of A is closed and the external work left in the last
term in Eq. (56) is the only work done, we have

dN � dNP � dNQ � 0 �63�
and

dE � dEP � dEQ �
Z

drqP�r�dm�r� �
Z

drqQ�r�dm�r�

�
Z

d�r�q�r�dm�r� : �64�
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Let us de®ne the adiabatic electron transfer across the
interface as dnQ:

dNP � ÿdNQ � dnQ > 0 �65�
and the adiabatic heat transfer across the interface as
dxQ:

dQP � ÿdQQ � dxQ : �66�
Using Eqs. (41), (51), (65), and (66), we have

dQP � dFP �
Z

dr dqP�r�m�r� � dxQ

� TP dSP � lP ÿ aPQ
ÿ �

dnQ ; �67�

dQQ � dFQ �
Z

drdqQ�r�m�r� � ÿdxQ

� TQ dSQ ÿ lQ ÿ aQP

ÿ �
dnQ : �68�

Then the regional entropy production is calculated to be

dSP � dxQ
TP
ÿ lP ÿ aPQ

TP
dnQ ; �69�

dSQ � ÿ dxQ
TQ
� lQ ÿ aQP

TQ
dnQ ; �70�

and the entropy production as a whole is found to be

dS � dSP � dSQ

� 1

TP
ÿ 1

TQ

� �
dxQ ÿ

 
lP

TP
ÿ lQ

TQ
ÿ
�

aPQ
TP
ÿ aQP

TQ

�!
dnQ :

�71�
In the limit of a small temperature di�erence, we shall
introduce a symbol DR which denotes the regional
change at the region R and we obtain

dS � DQ
1

T

� �
dqQ ÿ 1

TQ
�DQ�lQ�TQ

ÿ DP�aPQ�TP
ÿ DP�aQP�TP

�� �
dnQ ; �72�

where the net heat transfer is denoted as dqQ:

dqQ � dxQ

�
 
ÿ lQ � TQ

@lQ

@TQ
ÿ TQ

@aPQ
@TP

ÿ @aQP

@TP

� �!
dnQ :

�73�
The regional dissipation function TRHR for entropy
production is then calculated, using a symbol gradR
which denotes the regional gradient at the region R, to
be

HQ � gradQ
dSQ

dt

� �
; �74�

TQHQ �
X
kQ

XkQJkQ ; �75�

where the generalized force XkQ and the conjugate ¯ux
JkQ are de®ned as

XqQ � ÿgradQ ln�TQ�; JqQ �
dqQ

dt
; �76�

XnQ � ÿgradQ lQ

ÿ �
TQ
�gradP aPQ

ÿ �
TP
ÿgradP aQP

ÿ �
TP
;

JnQ �
dnQ

dt
: �77�

The regional electron transferability or the regional
conductance is calculated by modifying the Kubo
formula [14] as follows

RQ � DQSQ; SQ � 1

2gQ
; 2gQ �

@lQ

@NQ
; �78�

where DQSQ, and gQ denote, respectively, the di�usion
constant, the absolute softness, and the absolute hard-
ness [15] de®ned for the region R. The transition state of
the chemical reaction can now be postulated to be the
one that corresponds to the nuclear framework in which
a particular region possesses the maximum regional
electron transferability. This postulate has been numer-
ically demonstrated in some ion-molecule chemical
reaction systems to encompass the conventional de®ni-
tion of the transition state as the saddle point of the
potential energy surface along the IRC [16]. We need to
study further the relationship of the concept of the
electron transferability and the concept of the transition
state that determines the critical point of the electronic
process of chemical reactivity.

A case of irreversible electron transfer could be ob-
served under the condition of constant temperature:

TP � TQ � T : �79�
For the irreversible process to occur, the entropy
production should be positive, dS > 0. The formula is
found from Eq. (71) to be

dS � ÿ 1

T
lP ÿ lQ ÿ aPQ ÿ aQP

ÿ �ÿ �
dnQ > 0 ; �80�

and then we have

lP � aQP < lQ � aPQ : �81�
This is the quantum mechanical criterion of irreversible
electron transfer from Q to P at constant temperature,
Eq. (79).

A particular adiabatic process of great concern in the
electronic theory of chemical reactivity is the quasi-static
process de®ned as

dS � dSP � dSQ � 0; TP � TQ � T ; �82�
and hence from Eq. (80) we conclude

lP � aQP � lQ � aPQ : �83�
This again con®rms Eq. (57) and hence is written
explicitly as

lG � lP � aQP � lQ � aPQ : �84�
In this case, the entropy production disappears and
therefore, we concentrate solely on the change in the
regional electron numbers. Let us then introduce the
coordinate of electron transfer C that is a function g�x�
of x � NP ÿ NQ [3]:
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C � g�NP ÿ NQ� : �85�
The change in E with respect to C has been referred to as
the excitation potential e [3]:

e � @E
@C

� �
S;N ;m

�86�

The partitioning of e is given by

e � eP � eQ ; �87�
where the regional excitation potentials are de®ned as

eP � @EP

@C

� �
S;N ;m

; eQ � @EQ

@C

� �
S;N ;m

; �88�

which are now calculated to be

eP � dQP ÿ T dSP

dC
; �89�

eQ � dQQ ÿ T dSQ

dC
: �90�

Using Eqs. (67), (68), (89), and (90), we obtain

dQP � dFP �
Z

dr dqP�r�m�r�
� T dSP � eP dC � T dSP � lP ÿ aPQ

ÿ �
dnQ ; �91�

dQQ � dFQ �
Z

dr dqQ�r�m�r�
� T dSQ � eQ dC � T dSQ ÿ lQ ÿ aQP

ÿ �
dnQ ; �92�

The excitation potential as a whole then vanishes:

e � eP � eQ � @E
@C

� �
S;N ;m
� 0 ; �93�

where Eqs. (91) and (92) have been added and Eqs. (82)
and (83) have been used. Alternatively, using Eqs. (66),
(82), (89), and (90), we have Eq. (93).

On the other hand, introducing the transfer potentials
[4]

sP � @EP

@N

� �
S;C;m

; sQ � @EQ

@N

� �
S;C;m

; �94�

we have the sum rule as follows:

lG � sP � sQ � @E
@N

� �
S;C;m

; �95�

where we have used Eqs. (4) and (93).
The transfer potentials are combined to prove another

rule, the di�erence rule. Here we consider the process of
nonzero dN under the quasi-static condition of Eq. (82).
Then, using Eqs. (41), (51), (88), and (94), we have

dQP � dFP �
Z

dr dqP�r�m�r�
� T dSP � lP dNP � aPQ dNQ

� T dSP � sP dN � eP dC ; �96�

dQQ � dFQ �
Z

dr dqQ�r�m�r�
� T dSQ � lQ dNQ � aQP dNP

� T dSQ � sQ dN � eQ dC : �97�
Here we use Eqs. (61) and (85) to obtain the relationship

dN � dNP � dNQ ; �98�
dC � g0 dNP ÿ dNQ

ÿ �
; �99�

and substituting Eqs. (98) and (99) into Eqs. (96) and
(97), we obtain

lP � sP � g0eP; aPQ � sP ÿ g0eP ; �100�
lQ � sQ ÿ g0eQ; aQP � sQ � g0eQ : �101�
We therefore prove a couple of di�erence rules

lP ÿ lQ � sP ÿ sQ ; �102�
aPQ ÿ aQP � sP ÿ sQ ; �103�
where we have subtracted Eq. (101) from Eq. (100) and
have used Eq. (93). The second di�erence rule, Eq. (103),
can also be deduced from Eqs. (83) and (102). Thus Eqs.
(95) and (102) constitute the regional chemical potential
inequality principle as shown in Fig. 1.

We shall here augment Eqs. (98) and (99) with some
useful relationships as follows:

dNP � 1

2
dN � dC

g0

� �
; �104�

dNQ � 1

2
dN ÿ dC

g0

� �
; �105�

and

@

@N
� 1

2

@

@NP
� 1

2

@

@NQ
; �106�

@

@C
� 1

2g0
@

@NP
ÿ 1

2g0
@

@NQ
; �107�

5 Example

As an example, we take the limit of T � 0. Then the
density matrix reduces to that of the pure state
corresponding to a particular ground state of ®xed
electron number, say E � E0 and N � N0 for the zeroth
state. We have then the regional energy

ER � E
NR

N
� E

N
NR : �108�

That the regional energy is proportional to the regional
electron number is rigorously true in this limit. For a
closed system in the two-region problem under the
quasi-static condition of Eq. (82), the di�erentials of
Eq. (108) give

eP � 1

2g0
E
N
� NP

N

Z
drqQ�r�

dm�r�
dC
ÿ NQ

N

Z
drqP�r�

dm�r�
dC

;
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eQ � ÿ 1

2g0
E
N
� NQ

N

Z
drqP�r�

dm�r�
dC
ÿ NP

N

Z
drqQ�r�

dm�r�
dC

;

�109�
where we have used Eqs. (104) and (105). Therefore,
substituting Eq. (109) into Eqs. (100) and (101), we get

lP � sP � 1

2

E
N

� g0
NP

N

Z
drqQ�r�

dm�r�
dC
ÿ NQ

N

Z
drqP�r�

dm�r�
dC

� �
;

aPQ � sP ÿ 1

2

E
N

ÿ g0
NP

N

Z
drqQ�r�

dm�r�
dC
ÿ NQ

N

Z
drqP�r�

dm�r�
dC

� �
;

�110�

lQ � sQ � 1

2

E
N

ÿ g0
NQ

N

Z
drqP�r�

dm�r�
dC
ÿ NP

N

Z
drqQ�r�

dm�r�
dC

� �
;

aQP � sQ ÿ 1

2

E
N

� g0
NQ

N

Z
drqP�r�

dm�r�
dC
ÿ NP

N

Z
drqQ�r�

dm�r�
dC

� �
;

�111�
Moreover, for free electrons for which

m�r� � 0 ; �112�
and using the independent-particle model, we have the
equality

lG �
E
N
� const; EP � lGNP; EQ � lGNQ : �113�

Then we get

dEP � lG dNP; dEQ � lG dNQ ; �114�
and hence

sP � 1

2
lG; sQ � 1

2
lG ; �115�

eP � 1

2g0
lG; eQ � ÿ 1

2g0
lG ; �116�

where we have used Eqs. (106) and (107). Equation (116)
is also given by substituting Eq. (112) into Eq. (109).
Moreover, using Eqs. (100) and (101), we obtain

lP � lQ � lG; aPQ � aQP � 0 : �117�
Likewise, substituting Eq. (112) into Eqs. (110) and
(111), we get Eq. (117). The constancy of the regional
chemical potentials and the vanishing of the coherency

terms, Eq. (117), re¯ect the homogeneity of the electron
density q�r� and the absence of the quantum mechanical
interference e�ects.

6 Conclusion

Regional density functional theory has been extended to
treat irreversible thermodynamic electronic processes for
application to adiabatic electron transfer processes of
chemical reactions. Onsager's local equilibrium hypoth-
esis is slightly modi®ed to take into account the quantum
mechanical nature of the electron. The quantum me-
chanical interference e�ect has been demonstrated to be
included in the entropy production rate formula associ-
ated with electron transfer through an interface. The new
concept of regional electron transferability is proposed
and the determination of the transition state of a
chemical reaction has been postulated that corresponds
to the maximum of the regional electron transferability.
A quantum mechanical law of mass action has been
established and applied to prove the chemical potential
inequality principle. The new quantum mechanical
principle predicts the inequality between either

1. The Fermi level and the regional chemical potential,
or

2. The regional chemical potentials themselves.

As an example of the present theory, the zero-tem-
perature limit and the free-electron model have been
demonstrated.
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